分割投資 vs 一括投資

例えば、現在5000万円を持っているとして、 A: 毎年250万円ずつ投資して20年かけて投資額(元本)を5000万円にする B: 半分の2500万を一括投資して運用 どちらのほうがリスクが少ないか?

リスクの測定として、20年間運用した後の総資産額についての期待標準偏差を比較する。 投資ポートフォリオの特性として、1年あたりのリターンが、年率期待リターンmu, 年率期待標準偏差 sigmaの正規分布に従うi.i.d系列とする。 ポートフォリオリターンをBootstrap法により繰り返し発生させて比較を行う。

運用後の総資産額は指数的な分布になることが予測されるため、対数変換した値を比較する。 また、最終資産額についての95%信頼区間(2.5パーセンタイル値, 97.5パーセンタイル値)も合わせて求める。

対数変換した後の期待値、SDおよびその比率も示す。

#ライブラリ読み込み
library(ggplot2)
library(ggsci)

投資シミュレーションの関数定義

Simulation <- function(mu, sigma, year, initialPrice){
  # mu: 年率の期待リターン(算術平均リターン)
  # sigma: 年率の期待標準偏差
  # year: 投資する年数
  # initialPrice: 開始時の資産額
  
  # Parameters
  N <- year
  
  # Return Generation
  yearlyReturn <- rnorm(N, mu, sigma) # 年率リターンを正規分布(N(mu, sigma))に従うi.i.d系列として発生
  
  # 分割して投資する(A)
  totalAssetA <- rep(0, N) # 総資産額の格納
  cash <- rep(0, N)        # キャッシュ格納用
  investPrice <- rep(0, N) # 投資評価額の格納用
  
  cash[1] <- initialPrice # はじめのcashを設定
  contributeAmountA <- initialPrice/N # 1回あたり(毎年)の投資額
  
  # N年分シミュレーション
  for(i in 1:N){
    # 年初に投資
    investPrice[i] <- investPrice[i]+contributeAmountA
    cash[i] <- cash[i] - contributeAmountA
    
    # リターン計算
    investPrice[i] <- investPrice[i]*(yearlyReturn[i]+1)
    if(investPrice[i]<=0){investPrice[i] <- 0} # 0以下(破産)になったら0を代入
    totalAssetA[i] <- investPrice[i] + cash[i]
    if(i == N){break}
    
    # 繰越
    investPrice[i+1] <- investPrice[i]
    cash[i+1] <- cash[i]
  }
  
  # 半分を一括投資して運用し続ける(B)
  contributeAmountB <- initialPrice/2 # はじめに投資する額
  investPrice <- rep(0, N) # 投資評価額の格納用
  investPrice[1] <- contributeAmountB
  for(i in 1:N){
    investPrice[i] <- max(0, investPrice[i] * (1+yearlyReturn[i]))
    if(i==N){break}
    investPrice[i+1] <- investPrice[i]
  }
    totalAssetB <- investPrice[N] + (initialPrice - contributeAmountB)
  
  return(c(totalAssetA[N], totalAssetB)) # A, Bの最終資産額を出力
}
Simulation(0.09, 0.2, 20, 5000) # mu=0.09, sigma=0.2としてシミュレーションした結果
## [1] 4614.643 6227.518

シミュレーションの反復試行

Bootstrap法による反復試行は、1組の(mu, sigma)あたり100,000回とする。

repeatN <- 100000 #1組のパラメータあたりの試行数
resultA <- rep(0, repeatN) # Aの最終資産額(対数変換後)格納用
resultB <- rep(0, repeatN) # Bの最終資産額(対数変換後)格納用

# 以下のmu, sigmaの総当りの組み合わせで検定を行う。
m <- c(0.03, 0.06, 0.09, 0.12, 0.15) # mu(vector)
s <- c(0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5) # sigma(vector)

# 結果の格納用
sd_ratio_df <- data.frame(matrix(rep(0, length(m) * length(s)), nrow=length(s)))
mean_ratio_df <- data.frame(matrix(rep(0, length(m) * length(s)), nrow=length(s)))
mean_A_df <- data.frame(matrix(rep(0, length(m) * length(s)), nrow=length(s)))
mean_B_df <- data.frame(matrix(rep(0, length(m) * length(s)), nrow=length(s)))
median_A_df <- data.frame(matrix(rep(0, length(m) * length(s)), nrow=length(s)))
median_B_df <- data.frame(matrix(rep(0, length(m) * length(s)), nrow=length(s)))
sd_A_df <- data.frame(matrix(rep(0, length(m) * length(s)), nrow=length(s)))
sd_B_df <- data.frame(matrix(rep(0, length(m) * length(s)), nrow=length(s)))
lCI_A_df <- data.frame(matrix(rep(0, length(m) * length(s)), nrow=length(s)))
uCI_A_df <- data.frame(matrix(rep(0, length(m) * length(s)), nrow=length(s)))
lCI_B_df <- data.frame(matrix(rep(0, length(m) * length(s)), nrow=length(s)))
uCI_B_df <- data.frame(matrix(rep(0, length(m) * length(s)), nrow=length(s)))
results <- data.frame(matrix(rep(NA, 4), nrow=1))[numeric(0), ]
colnames(results) <- c("method", "mu", "sigma", "value")

# ループ
for(k in 1:length(m)){ # muについてのループ
for(j in 1:length(s)){ # sigmaについてのループ
  for(i in 1:repeatN){ # bootstrap
    # 特定の(mu, sigma)についてのシミュレーション
    res <- Simulation(m[k], s[j], 20, 50000000) # 1試行での結果(最終資産額)
    resultA[i] <- log10(max(res[1],1)) # A: 積立投資
    resultB[i] <- log10(max(res[2],1)) # B: 一括投資
  }
  
  # 結果(対数変換した最終総資産額の統計量を求める)
  mean_A      <- mean(resultA)
  mean_B      <- mean(resultB)
  median_A    <- median(resultA)
  median_B    <- median(resultB)
  sd_A        <- sd(resultA)
  sd_B        <- sd(resultB)
  sd_ratio    <- (sd_B/mean_B) / (sd_A/mean_A)
  mean_ratio  <- mean_B - mean_A
  CI_A <- quantile(resultA, c(0.025, 0.975))
  CI_B <- quantile(resultB, c(0.025, 0.975))
  results <- rbind(results, 
                 data.frame(method=rep("Dollar Cost",repeatN), 
                            mu=rep(m[k], repeatN), 
                            sigma=rep(s[j], repeatN), 
                            value=resultA),
                 data.frame(method=rep("Bulk",repeatN), 
                            mu=rep(m[k], repeatN), 
                            sigma=rep(s[j], repeatN), 
                            value=resultB))

  # テーブルにまとめる
  mean_A_df[j,k]     <- mean_A
  mean_B_df[j,k]     <- mean_B
  median_A_df[j,k]   <- median_A
  median_B_df[j,k]   <- median_B
  sd_A_df[j,k]       <- sd_A
  sd_B_df[j,k]       <- sd_B
  sd_ratio_df[j,k]   <- sd_ratio
  mean_ratio_df[j,k] <- mean_ratio
  lCI_A_df[j,k]       <- CI_A[1]
  uCI_A_df[j,k]       <- CI_A[2]
  lCI_B_df[j,k]       <- CI_B[1]
  uCI_B_df[j,k]       <- CI_B[2]
}
}
library(ggplot2)
library(ggsci)
# 箱ひげ図でそれぞれのsigmaについての中央値、四分位を示す。
plot_est_ci_bp <- function(results, sigma){
  title = paste("Final wealth distribution after 20 years in sigma = ", sigma, sep="")
  df_plot <- results[results$sigma==sigma,]
  g <- ggplot(df_plot, aes(x=as.factor(mu), y=value, fill=method))+
    geom_boxplot() +
    scale_color_nejm() +
    xlab("mu") + ylab("Wealth") +
    labs(title=title) +
    ylim(c(6,NA))
  return(g)
}

plot_est_ci_bp(results, 0.05)

plot_est_ci_bp(results, 0.1)

plot_est_ci_bp(results, 0.2)

plot_est_ci_bp(results, 0.3)
## Warning: Removed 135 rows containing non-finite values (stat_boxplot).